VA | EN

Transforman astrocitos en neuronas específicas para reparar circuitos visuales

Una investigación del Instituto de Neurociencias, centro mixto de la Universidad Miguel Hernández (UMH) de Elche y el Consejo Superior de Investigaciones Científicas (CSIC), demuestra por primera vez que es posible obtener neuronas específicas de una región cerebral determinada a partir de astrocitos, un tipo de células del sistema nervioso que llevan a cabo funciones muy importantes para el funcionamiento del cerebro, para reparar circuitos visuales. Este estudio está liderado por la investigadora del Instituto Guillermina López-Bendito.

Este proyecto, titulado Reprogramación de células talámicas para el restablecimiento de circuitos sensoriales, ha sido financiado por la Generalitat Valenciana con 400.000 euros y es la semilla para un nuevo proyecto impulsado por la Fundación La Caixa con 499.000 euros, a través de la Convocatoria CaixaResearch de Investigación en Salud.

La hipótesis de partida del grupo de Guillermina López-Bendito fue que, dado que las neuronas y los astrocitos se generan a partir de las mismas zonas germinales, podrían compartir firmas moleculares comunes que reflejen su origen y actúen potencialmente para coordinar las características de desarrollo específicas de la región a la que pertenecen. Así, han descubierto que los astrocitos del tálamo y de la corteza cerebral presentan firmas transcripcionales y epigenéticas específicas de la región a la que pertenecen. Esas firmas las comparten con las neuronas generadas dentro de la misma región, pero no con las de otras regiones. Además, esas firmas compartidas entre ambos tipos de células proporcionan un grado notable de especificación regional para la reprogramación de astrocitos en neuronas inducida por un factor proneural, o gen maestro, denominado Neurogenina 2. Para introducir este gen maestro, el laboratorio de la Dra. López-Bendito ha inyectado en el tálamo postnatal de los ratones un virus que infecta solo a los astrocitos y logra reprogramarlos para que se conviertan en neuronas.

Como los astrocitos y las neuronas comparten progenitor y la expresión de genes específicos de una región, es esa firma molecular la que dirige la reprogramación inducida por factores de transcripción para que los astrocitos adquieran una identidad similar a la de sus neuronas hermanas. Además, han visto que, al manipular ese código genético específico de cada región, se redirige la reprogramación de los astrocitos hacia neuronas de identidad regional diferente, pero predecible, en función de la manipulación efectuada.

Los astrocitos reactivos se encargan de proteger a las neuronas cuando se produce un daño, aunque en ocasiones su actuación, también, puede perjudicarlas si su reacción es muy potente. El aumento del número de astrocitos reactivos o astrogliosis favorece que estas células se vuelvan más maleables o más “dóciles”. “En esas circunstancias pensamos que tal vez, sin necesidad de introducir un gen maestro que guíe la reprogramación, podríamos observar de forma espontánea esa capacidad de los astrocitos para convertirse en neuronas. Con este trabajo se demuestra que el proceso de reprogramación de astrocitos a neuronas es factible. Y lo hemos conseguido en estudios tanto in vitro como in vivo en ratones control. Ahora nuestro reto inmediato y proyecto presente es hacerlo posible en modelos de ratón con ceguera congénita. En estos animales utilizaremos esta misma técnica para reprogramar astrocitos sensoriales y que se conviertan en neuronas visuales que suplan a las que se habían perdido”, concluye López-Bendito.

Referencia bibliográfica

Herrero-Navarro et al. Astrocytes and neurons share region-specific transcriptional signatures that confer regional identity to neuronal reprogramming, Sci. Adv. 2021; 7, eabe8978 7 April 2021.

Más información.

Fuente: UMH