Un nuevo implante cerebral con más de mil electrodos podría inducir la percepción de formas, movimiento y letras en personas ciegas, según indica un trabajo internacional publicado en la revista Science en el que ha participado el director del Grupo de Neuroingeniería Biomédica del Instituto de Bioingeniería de la Universidad Miguel Hernández (UMH) de Elche, Eduardo Fernández Jover. Este trabajo se ha realizado en colaboración con investigadores del Instituto de Neurociencias de Holanda y los resultados demuestran el potencial de esta tecnología, con 1.024 electrodos, para, en un futuro, ayudar a mejorar la calidad de vida de muchas personas ciegas.
Esta es la primera vez que se realiza un implante cerebral con un número tan alto de microelectrodos y, tal y como explica el profesor Eduardo Fernández. El ensayo se ha realizado en primates en laboratorios holandeses. Los resultados son muy prometedores para el desarrollo de una neuroprótesis visual, basada en microelectrodos similares a los implantados en estos animales, que pueda ayudar a personas ciegas o con baja visión residual a mejorar su movilidad e incluso, de una forma más ambiciosa, a percibir el entorno que les rodea y orientarse en él. No obstante, el investigador de la UMH añade que, aunque los resultados de este y otros trabajos son muy útiles para avanzar en el desarrollo de esta tecnología, todavía hay muchos problemas por resolver y por lo tanto es importante no crear falsas expectativas, ya que de momento solo se trata de una investigación en curso.
Para poder implantar un número tan alto de microelectrodos en una superficie curva como es el cerebro de un primate, los investigadores tuvieron que utilizar 16 pequeñas matrices de electrodos, de 2,8 x 2,8 cm de lado. Cada una contenía 64 microelectrodos, lo que resulta en un total de 1.024.
Los investigadores han podido comprobar que gracias a la utilización de un número tan alto de microelectrodos la percepción se produce en una porción significativa del campo visual y con una resolución mucho más alta de lo que se había conseguido hasta la fecha. Por otro lado, también, han conseguido implantar electrodos de manera simultánea en varias áreas cerebrales y han encontrado que el registro de las neuronas de una de las áreas visuales, conocida como V4, es capaz de predecir la cantidad de corriente que se necesita para inducir la percepción de pequeños puntos de luz, denominados fosfenos, en la corteza visual primaria (V1). Este descubrimiento tiene un importante valor traslacional, ya que podría ayudar a desarrollar, en el futuro, nuevas tecnologías para reducir de manera significativa el tiempo necesario para el aprendizaje y calibración de toda la neuroprótesis visual.
Este trabajo ha sido publicado en la revista científica Science y forma parte de una investigación financiada por la Comisión Europea, dentro del programa H2020, en la que participa el grupo de Neuroingeniería Biomédica de la UMH.
Eduardo Fernández Jover es doctor en Medicina, catedrático de Biología Celular de la UMH, director del grupo de Neuroingeniería Biomédica del CIBER-BBN y de la Cátedra de Investigación en Retinosis Pigmentaria Bidons Egara. En el contexto de esta investigación, el profesor Fernández Jover apunta que aunque en los últimos años se han descrito algunos procedimientos innovadores para algunas patologías visuales basados en terapias avanzadas y medicina regenerativa, la mayoría de estos tratamientos todavía se encuentra en una fase clínico-experimental muy preliminar. Según el investigador de la UMH, estos tratamientos todavía están en una fase clínico-experimental muy temprana y además, podrían no servir para todas las personas ciegas, por lo tanto las neuroprótesis visuales son una necesidad para el futuro y podrían ayudar a muchas personas ciegas.
Fuente: UMH